Wednesday, February 20, 2008

Operations with radicals

Today we were learning and recalling on radicals.

  • Ex. In order to add or subtract variables, the variable must be the same.
  • The same is true when adding or subtracting radicals.
  • The Part under th eradical must be exactly the same!!!

We didn't do much notes but more examples on how to:
Multiply a radical by a binomial && Radial Binomial Multiplication.

We also did 2 different assignments.

One was on -->Page 23 # 9 - 28 odd
and
the other was -->Page 23 # 29 - 35

Thursday, February 14, 2008

February 14, 2008

Today we learned about rationalizing radicals when the radical sign
is in the demonimator. You do it by multiplying it by a form of 1 such as square 2 over square 2, to move the radical up top.
Its a pain in the butt, but its worth it. Todays assignment was page 19 #35-53 odd. Tomorrows scribe is Kara Lee Rae. Haha

Wednesday, February 13, 2008

simplifying radicals

today in class we worked on simplifying radicals.

We lernt that we must lern numbers like 75 (sqaure root) and 2/9 (sqaure root) are called entire radicals

And numbers like 5 Sqaure 3 and 1/3 sqaure 2 are called mixed radicals




Joss Gowland

Tuesday, February 12, 2008

February 11, 2008

Today in class we learnt how to Simplify Radicals.

Mrs. Remple used a card game at first to help us understand the concept.
She handed everyone a few cards from her deck of cards. Everyone organized their cards into pairs of 2. We put all our pairs on the left side of our desk and our extra cards on the right. Then we repeated all this but making sets of 3. It helped show us what happens when we are simplifying radicals.

Here is an example:

²√ 16x³y¹z²
= 2∙2∙2∙2∙x∙x∙x∙y∙z∙z
There are two sets of 2s.
{2∙2}∙{2∙2}∙x∙x∙x∙y∙z∙z
There is one set of X’s and one X left over.
{2∙2}∙{2∙2}∙{x∙x}∙x∙y∙z∙z
There is only one Y, so it is just a left over.
There is one set of Z’s with 0 left over.
{2∙2}∙{2∙2}∙{x∙x}∙x∙y∙{z∙z}.
The simplified answer is:
2²xz√xy

February 8, 2008

Today we learnt about Real Number Stuff. We did questions from the overhead with groups.
Some examples of questions were:
State wheather each of the following is always true, sometimes true, or never true.
The sum of a rational number and an irrational number is:
a) Positive: Sometimes True
b) Irrational: Always True
c) A fraction: Never True
d) Rational: Never True
e) Negative: Sometimes True
f) A whole number: Never True

If you took the absolute value of every number in each of the following sets of numbers, which set of numbers would you obtain?
a) Integers: Whole numbers
b) Negative integers: Natural numbers
c) Whole numbers: Whole numbers
d) Real numbers: Positive real numbers and zero
I learnt alot this day ha thanks to Ms. Remple she gave us no homework!

Friday, February 8, 2008

Feb.4/5

In pre-cal today we started unit 1 (Radicals and Rational Exponents)
Lesson 1- Math 10F Review

Mental Math
Multiply Polynomials
Ex.1 Expanding
a) 3(a+4) Ex.2
3a+4 a) (x+4)(x+3)-Used FOIL Method
x^2+3x +4x +12
b) x(x+3) x^2 + 7x +12
x^2 -3x

c)-5(y-2)
-5y + 10

Those were some examples of what we did the first day of pre-cal 20s.

February 7 - Real Numbers and Absolute Value

Today, February 7th, in PreCal 20S, we learned about real number lines.

Every real number corresponds to a point on the real number line. There is a one-one correspondence between real numbers and the points on the line. In this real number line, there are no gaps, the line is complete throughout. Example:
_________________________________________
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

When Graphing on a Real Number Line - An open dot means that the point does not include the real number. A closed dot means that the point includes the real number.

Absolute Value

Also, today in class, we learned about absolute value.
The absolute value of a real number is the distance from zero to the position of the number on the real number line. When finding the absolute value of a real number, ignore the signs.
The notation for absolute value is x
Example: -2 = 2 , 2 = 2
Example: 2 - -5 , 2 - 5 = -3

Sunday, February 3, 2008

deSCRIBE




Until the invention of the printing press, scribes were the people that were paid to write or copy books by hand. These were the educated people of their civilizations. In our class, the scribes will be the ones writing the customized textbook for our course.


A Scribe post is a summary of what happened in class. It is filled with enough detail that someone who missed class will be able to catch-up on what they missed. As you are writing your posts ask yourself "Is this entry worthy to be included in our textbook? Would a graphic or example help clarify this topic?" At the end of your scribe post you will name the next scribe and you will tag your post with the date and unit.

I learned about scribe posts from Mr. Kuropatwa at Daniel Mac and Mr. Harbeck at Sargent Park (both schools are in Winnipeg). Once I have learned how to include links, I will give the links to their blogs! The blogs that their students have created have impressed me to the point of making scribe posts a mandatory part of PreCal 20S at Ste. Anne Collegiate.



We will also have pre-service teachers from the University of Regina reading and commenting on your posts. This blog will be as rich and useful as you make it. This will be a place for you to think about your learning and to ask questions of your fellow classmates, the pre-service teachers, me (Mrs. Remple), and the world outside of the halls of SAC.